

Spection Analyzers FSEx

 Spectrum analysis with ultra-widedynamic range

Noise figure = 18 dB/701 20 dBm typ. (FSEB)

 Universal analysis of digital and analog modulated signals option such as

BPSK, QPSK, π /4-DQPSK, 885K, QAM, MSK, GMSK, 2FSK, AM, FM, PM

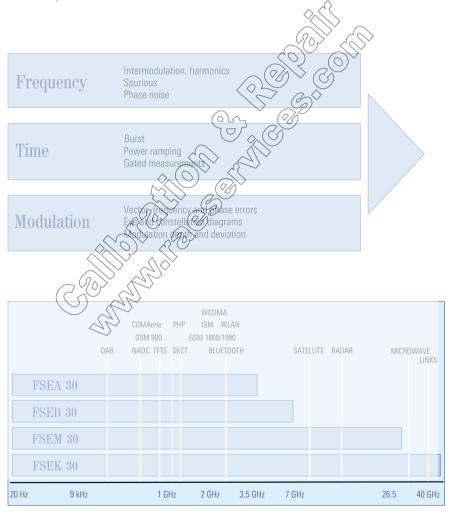
High speed synthesizer

5 ins for full span (FSEA, FSEB)

Refresh rate, guasi-analog

X5 sweeps/s

- Large LC TFT display24 cm/9.5", active
- Future-proof modular design
 Customized solutions through wide variety of options


The Spectrum analyzer's from Rohde & Schwarz

Overview

The FSE spectrum analyzers from Rohde & Schwarz have been optimized both for general-purpose measurements and meeting the stringent requirements of testing advanced digital communication systems. High measurement speed, future-proof modular design and excellent characteristics put the analyzers right at the top of today's market — at an attractive price.

Characteristics

- Combines the following functions: spectrum analysis and analysis of digitally modulated signals (option)
- Spectrum analysis with maximum dynamic range
- Adaptation of all models to your specific requirements by means of a wide range of options

Modular~design~ior~a~services.com/services/guote htm. the constraint of the constr

The FSE "option building blocks"

- B2 B7 B8 B8 B9 B10 B11	• • • • • • • • • • • • • • • • • • •	- • •	- - 0 -	- - - -
B7 B8 B9 B10	0	O	-	- - -
B8 B9 B10	0	_	-	- -
B9 B10		- - O	-	_
B10	<u> </u>	-	-	-
	_	0	0	
B11				0
		2.4	\ 0	0
B12 ¹⁾	0		> 20)
B13 ¹⁾²⁾	0 6	200		0
B15		\\ \(\)		0
B16	B	(Z)	0	0
B17	77	90	0	0
B18 ³⁾		0	0	0
B19		0	0	0
BZZ	-	_	0	0
822 ³⁾	0	0	0	0
B23 ³⁾	0	0	0	0
B24 ³⁾	_	_	_	0
3	0	0	0	0
4	0	0	0	0
K10/-K11	0	0	0	0
K20/-K21	0	0	0	0
	B13 ¹⁾²⁾ B15 B16 B17 B18 ³⁾ B23 ³⁾ B23 ³⁾ B24 ³⁾ 3 4 K10/-K11	B13 ¹⁾²⁾ B15 B16 B17 B18 ³⁾ B23 B23 ³⁾ B24 ³⁾ B25 ³ B26 ³ B27 B27 B28 ³ B28 ³ B29 ³	B13 ¹⁾²⁾ B15 B16 B17 B18 ³⁾ B23 B23 B23 ³⁾ B24 ³⁾ B25 ³ B24 ³⁾ B25 ³ B26 ³ B27 B27 B28 ³ B28 ³ B29 ³	B13 ¹⁾²⁾ B15 B16 B17 B18 ³⁾ B23 B23 ³⁾ B24 ³⁾ B25 B26 B27 B27 B28 B28 B29 B29 B29 B29 B29 B29

[●] Incorporated in basic model O Can be retrofitted (option)

¹⁾ FSE-B12 and FSE-B13 cannot be fitted together.

²⁾ In combination with FSE-B22 factory-fitted only.

³⁾ Factory-fitted only.

Specifications in brief

- Resolution bandwidths
 1 Hz to 10 MHz,
 adjustable in steps of 1/2/3/5/10
- Displayed noise floor –150 dBm (typ.) in 10 Hz bandwidth
- 3rd-order intercept point +20 dBm typ.

- 1 dB compression point of RF input
 +10 dBm
- Phase noise at 10 kHz from carrier:-123 dBc (Hz) (tvp.) (FSEA 30)
- Total level measurement uncertainty up to 1 GHz <1 dB, up to 7 GHz 1.5 dB
- AM/FM audio demodulator (with built-in loudspeaker and headphones connector)
- Internal RF trigger (trigger threshold approx. –20 dBm)
- 5 ms full-span sweep time with fully synchronized sweep (FSEA, FSEB), 150 ms with FSEM, 230 ms with FSEK
- 1 µs zero-span sweep time
- Pretrigger and trigger delay
- Gafted sweep

Vector analysis for digital communication

The analyzers of the FSE family combine the capabilities of high-end RF or microwave spectrum analysis with those of universal digital-signal demodulation and analysis. This becomes possible with the vector signal analyzer option. The spectrum analyzer function offers the wide dynamic range necessary for many measurements on digitally modulated signals (e.g. burst measurements), and the vector signal analyzer option adds demodulation capability to bit stream level for signals such as

- BPSK, QPSK, π/4-DQPS
- _ 160AM, (G)MSK, (G)FS

All this is backed up by a variety and splar types:

- Eye diagram
- Vector and constellation diagram
- Frequency and phase error
- Vector error

With a spectrum analyzer of the FSE family, you are perfectly equipped for the future of digital communication.

Modularity safeguards

Series FSE analyzers are of modular design throughout. From the wide variety of options, you can choose exactly those needed for your particular application (see also fold upone).

Youthus get an instrumont railor-made to your requirements and pay for no more

than what you actually need. At the same time, you can feel sure that FSE will grow with your tasks and requirements as virtually all options can be retrofitted. Even extending the frequency range from 3.5 GHz to 7 GHz is no problem with option FSE-B2.

Your decision for Spectrum Analyzer FSE is a decision for a safe investment.

SE optioned their applications

/	-	101					
~~	Digital mobile radio systems	Analog mobile radio systems	TV and CATV	AM and FM sound broadcasting	General-purpose RF measurements		
	0				0	FSE-B2	7 GHz Frequency Extension
	•	0		•		FSE-B7	Vector Signal Analyzer
			0		0	FSE-B8/-B9/-B10/-B11	Tracking Generator
	0					FSE-B13	1 dB Attenuator
	0				0	FSE-B15	Controller
					0	FSE-B21	External Mixing
					0	FSE-B23	Broadband Output 741.4 MHz
	0	0	0		0	FS-K3	Noise Measurement Software
	0	0			0	FS-K4	Phase Noise Measurement Software
	0					FSE-K10/-K11	GSM Application Firmware
	0					FSE-K20/-K21	EDGE Application Firmware
`	ANSI	NCSI	NAH	QTD	hy war	w raeservices coi	m

Required

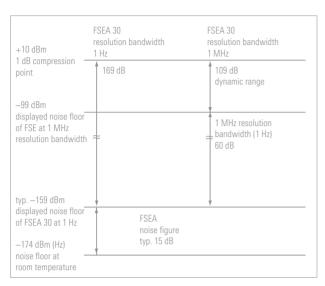
NIST, ISO, IEC, ANSI, NCSL, MIL-STD by www.raeservices.com

High speed increases efficiency

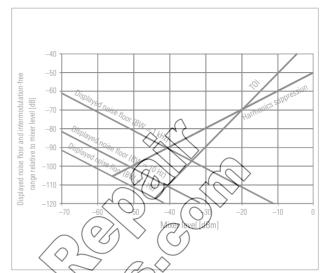
The high speed of FSE increases efficiency in development and production:

 FSE features a minimum full-span sweep time of 5 ms (FSEA/B) with a fully synchronized sweep. This means that added speed is not at the expense of frequency accuracy but even enhances it The shortest zero-span sweep time is 1 µs (100 ns/div) — ideal for highresolution measurements on pulse edges

 Up to 25 sweeps per second is an optimal prerequisite for rapid and easy alignments and for applications in production With its high measurement speed and great ease of operation, FSE will solve even highly complex measurement tasks in next to no time.



Certified Environmental System


SO 14001

REG. NO 1954

To receive a calibration and/or repair quote-RMA from R.A.E. Services Inc. The features in detail ...

Dynamic range, noise, 3rd-order intercept point

Tops in dynamic range

FSE is outstanding for its extremely low noise floor without any impairment to the dynamic range at large signal levels. This can be seen, for example, from the 1 dB compression point of +10 dBm, which yields the best dynamic range available even at a resolution bandwidth of MHz, allowing GSM and DECT power ranges to be determined.

An extremely wide intermodulation-free dynamic range of 15 dbs obtained due to the low noise figure and the kinn are order intercept point. This not only yields reliable intermodulation measurements on highly linear amplifiers, but also ensures a sufficient dynamic range for adjacent-channel power measurements on digitally modulated signals.

Taking as a figure of merit of an analyzer the difference between its 3rd-order intercept point and its noise figure, FSEA has a value of around 0 dB. Put this figure to the test.

From AF to microwave

FSEM/K.30 open up the microwave range through to 28.5 GHz/48 GHz and retain the excellent characteristics of the basic models:

0

Continuous full-span sweep

- Fundamental mixing (low noise floor)
 as well as wide dynamic range up to
 - Fully synchronized sweep with high frequency accuracy even for Full span (26.5 GHz/40 GHz)
- RF input adapters for N or PC 3.5 mm, or K connector (FSEM or FSEK)

Option FSE-B21 allows the frequency range of FSEM and FSEK to be extended by means of external mixers. Mixers FS-Z60 (40 GHz to 60 GHz), FS-Z75 (50 GHz to 75 GHz), FS-Z90 (60 GHz to 90 GHz) and FS-Z110 (75 GHz to 110 GHz) are available as extras. Continuous automatic signal identification, which is used to suppress unwanted image frequency bands and mixture products, ensures fast and easy measurements. Due to the built-in

diplexer, two-port as well as three-port mixers can be used.

The external mixer measurement function features great ease of operation:

- Definition of frequency range and harmonics by selecting a waveguide band
- Definition of all important parameters for each waveguide band separately
- Frequency-dependent consideration of mixer conversion loss
- Storage of parameters on hard disk

Unattained measuring convenience

FSE makes measuring easy for you through a large number of convenient test functions:

- 4 markers, 4 delta markers
- Marker functions for direct measurement of
- phase noise and noise power density
- NEXT MIN/PEAK, NEXT MIN/PEAK
 RIGHT. NEXT MIN/PEAK LEFT
- bandwidths and shape factor
- Measurement of channel power, adjacent channel power and occupied bandwidth
- Frequency counter with selectable resolution
- LOW NOISE, NORMAL and LOW DISTORTION modes for low-intermodulation and low-noise operation
- Hardcopy at a keystroke
- Simultaneous measurement of four active traces
- Level, frequency and user-definable limit lines as evaluation help with pass/fail information
- Split screen with independent med surement windows

Frequency accuracy - to the point

Tuning on FSE is absolutely synchronous to the reference frequency for each span including full span. This means that every point on the frequency axis is determined with the accuracy of the internal reference frequency and the pixel resolution. Thus, when reducing the span for detailed signal analysis, the tiresome readjustment of the center frequency is no longer needed.

FSE in its basic configuration includes an AM/FM audio demodulator. Unknown signals can easily be identified via headphones or the built-in loudspeaker. Modulation measurements are possible using the optional Vector Signal Analyzer FSE-B7.

Limit lines facilitate checking whether results are within predefined tolerances. Virtually any number of limit lines can be defined with high accuracy by means of 50 points to meet even the most exacting requirements.

Scalar network

The optional tracking generators for data sheet for 4SE-B8/9/10/11

PD 0757.3434 are an ideal tool for determining frequency response attenuation of VSWR and feature (1976) owing characteristics

Wide dynamic range for attenuation measurements (up to 120 dB)

- Frequency range from 9 kHz to
 - \star frequency offset up to \pm 200 MHz for measurements on frequency-converting modules

The tracking generators with built-in I/Q modulator are ideal for generating digitally modulated signals. An external two-channel Arbitrary Waveform Generator (e.g. AMIQ from Rohde&Schwarz) serves as modulation source.

By adding the optional Vector Signal Analyzer FSE-B7, FSE can be expanded to a test assembly enabling direct measurement of the influence of amplifiers or filters on phase error for instance.

Operation – as you like it

Despite their comprehensive functionalities the analyzers feature great ease of operation. Basic functions and frequently used help tools such as markers can be called at a keystroke. The full operating convenience based on a wide variety of evaluation portions and marker functions can be accessed via the menus.

An essential parameters and results can be seen at a chance. All test data, scale factors and setting parameters are logically arranged and therefore easy to find. Settings, traces and graticules displayed in complex results.

All models are equipped with a large 24 cm (9.5") TFT colour display with VGA resolution (640 x 480 pixels).

The USER key allows the FSE operation to be tailored to your specific requirements. With this key, you can compile the functions mainly needed for your measurement tasks, which does away with frequent menu changes and speeds up measurements on the whole.

Test results – perfectly documented

FSE affords uncomplicated logging of results. It supports a wide variety of printers such as:

- Printer with HP-PCL4 and HP-PCL5
- HP Deskjet/HP Laserjet
- Postscript

Print files cannot only be output via an interface but can also be stored on diskette or the internal hard disk. With PCX, WMF and HP-GL (without option

To receive a calibration and/or repair quote-RMA from R.A.E. Services Inc. The features in detail...

Designation	Туре	Use	Functions
Noise Measurement Software	FS-K3	Noise figure measurements	- Measurement of noise figure and temperature to Y-factor method - Measurements on frequency-converting devices - Frequency range same as basic unit, starting from 100 kHz - Editor for ENR tables - Runs on the internal controller (option) or on an external PC (Windows NT/Windows 98)
Phase Noise Measurement Software	FS-K4	Phase noise figure measurements	- Easy-to-use phase noise measurements - Measurement of residual FM and PM - Logarithmic plot over 8 decades - Runs on the internal controller (option) or on an external PC Windows (VT/Windows (98))
Application Firmware ¹⁾	FSE-K10, Mobile FSE-K11, BTS	Mobile radio transmit- ter measurements to GSM standards 11.10 and 11.20	- Power ramp and power template - Spectrum due to modulation/switching - Spurious emissions - Mean carrier power - Phase/frequency error (with option) F&E b71
Application Firmware ²⁾	FSE-K20, Mobile FSE-K21, BTS	EDGE capability added to Application Firmware FSE-K10 and FSE-K11	- Modulation accuracy measurement including EVM measurement using weighting filter to ETS 95:th-percentile reasurement of origin offset suppression - Limit lines for EDGE to ETS/05.08

See data sheet FSE-K10/-K11.

FSE-B15) as well as BMP and WMF (with option FSE-B15) print formats being available, there is no problem in further processing print files in standard text processing systems. Using Controller FSE-B15, it is particularly easy to generate test reports and integrate the results. Texts can then be processed under Windows on FSE itself.

FSE as a controller

The optional Controller FSE-B15 provides a further VGA card, a memory extension to 64 Mbyte, a serial mouse and a keyboard. With this option, Windows NT applications, e.g. statistics programs or spreadsheet analysis, can be installed on FSE. FSE can even be linked to a network using the optional Ethernet Interface FSE-B16.

Complete setups, resees, limit lines and macros can be etoted on the internal hard dispersion on a dispersion the built-in 1.44 Mbyrg drive.

YSY in automatic test systems

FSE is ideal for use in automatic test systems, affording not only fast processing of results but also an IEC/IEEE-bus command set conforming to SCPI.

Moreover, with optional Controller FSE-B15 and a second IEC/IEEE-bus card (option FSE-B17), FSE can be used as a controller for test systems, thus eliminating the need for further units and saving space in the system cabinet.

Low overall costs

In designing FSE, special emphasis was placed on keeping after-sales costs to a minimum:

- Temperature-controlled fans
- Calibration interval up to 2 years
- Built-in calibration routines
- Numerous selftest routines
- Modular design

²⁾ See data sheet FSE-K20/-K21.

Calibration routines

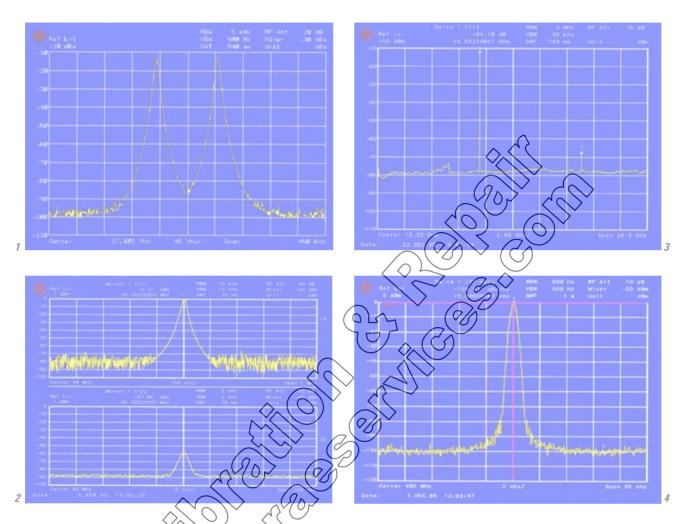
Built-in calibration routines ensure that FSE remains within defined tolerances and thus maintains its accuracy of measurement. The routines are not performed automatically by the instrument but can be started by the user, thus avoiding ongoing measurements to be interrupted. The results of calibration routines are output by FSE in the form of comprehensive correction tables. Comparing these tables over an extended period of time, the user can detect changes early and take corrective steps in time. This enhances confidence in the unit's reliability and measurement accuracy.

A particular asset in system applications is the internally selectable, high-precision level calibration source, which reduces the number of cables required.

Selftest – the built-in diagnostic system

The instrument selftest rapidly locates any faults down to module level. Defective modules can be replaced nearly without adjustments or extra test equipment being required. This in conjunction with the quick spare parts service from Rohde&Schwarz reduces any repair or downtime costs that might arise. The low operating costs go easy on your budget.

Modular design – easy retrofitting of options


The modular concept of the most important options such as Vector Signal Analyzer and 7 GHz Frequency Extension, as well as the alignment-free incorporation of the penairing options make it possible to retroit the instrument with a minimum of downtine or installation costs being

Quality management at Bod Schwarz

Josting customer satisfaction is our primary objective. The quality management system of Rohde&Schwarz meets the requirements of ISO 9001 and encompasses largely all fields of activity of the company.

Rear view of FSE

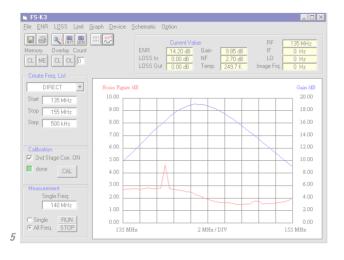
General-purpose RF ments

Two-tone measurements (1)

FSE facilitates intermodulation measurements with its wide intermodulation-free dynamic range, which reduces measurement errors. This feature is enhanced by the LOW DISTORTION mode, which ensures optimum RF attenuation. Evaluation of results is rapid and easy by means of markers and delta markers.

Harmonics measurements with split screen (2)

The split-screen function has been provided for the convenient analysis of results. In harmonics measurements, for example, the fundamental and the first


harmonic can be displayed simultaneous with high resolution.

Low noise floor even in the microwave range (3)

Thanks to fundamental mixing FSEM features the same constantly low noise floor as an RF analyzer up to 26.5 GHz. As a consequence, FSEM offers not only a wide dynamic range, but also a considerably increased speed for measuring small signals in the microwave range: Larger resolution bandwidths and high sensitivity reduce sweep time while maintaining the S/N ratio. This is of great advantage when measuring spurious and harmonics alike.

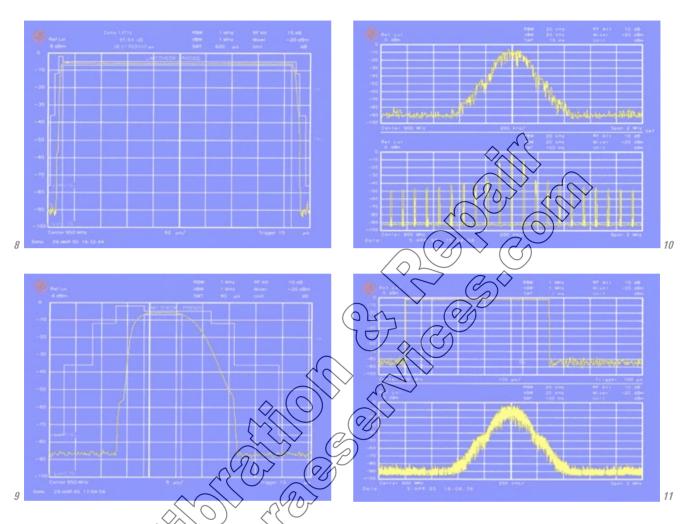
FSE phase noise as a function of carrier spacing (4)

With a phase noise of -123 dBc (Hz) at 10 kHz from the carrier, the synthesizer incorporated in FSEA 30 is ideal for measuring the phase noise of oscillators or the adjacent-channel power of radio equipment.

Noise figure measures

Noise Measurement Sufficience S-K3 (5) FS-K3 turns your FSE Into a noise measurement system of singly he advantages of an analyzer (see also data sheet PD 0757.2380):

- Wide variety of resolution bandwidths for every application, even for measurements on narrowband DUTs
- If results are doubtful, the analyzer allows the test setup to be checked for radiated interference or nonharmonics
- Lower frequency limit of 100 kHz
- Measurements on frequency-converting DUTs supported by external generator


Phase Noise Measurement Software

With FS-K4 (see also data sheet PD 0757.4201), FSE can be used as a phase noise analyzer. The phase noise of an input signal can easily be measured over several decades and displayed on a logarithmic frequency axis. The residual FM or PM can be determined conveniently within freely selectable limits.

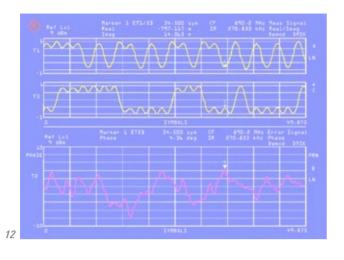
RMS detector: power measurement without correction factors (7)

In the example, the power of a CDMA signal in the transmission channel and the adjacent channels is measured. The two traces show the influence of the DUT on the adjacent-channel power. Measuring power and adjacent-channel power of

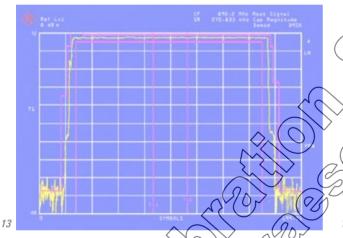
digitally modulated signals requires a spectrum analyzer to be equipped with special detectors and test routines. FSE is the first spectrum analyzer that features a real power detector with wide dynamic range – the RMS detector. Like a thermocouple power meter, this detector guarantees stable and accurate test results without any correction factors. Considerably higher test throughput is achieved than with the usual sample detector. Using the available default settings for ACP measurements in line with common standards (NADC, PDC, CDMA, WCDMA, etc) precise test results are obtained easily and fast.

Mobile radio – digital and analog

RF power trigger replaces external rigger (no illustration)


An internal broadband level detector (center frequency ±50 MHz with a fixed switching threshold of approx. –20 dBm at the first mixer is used as a trigger source. With this detector it is possible, for example, to perform "spectrum due to switching" and "spectrum due to modulation" measurements to GSM specifications without an external trigger. The detector replaces the external trigger needed in the gated sweep mode.

Gap sweep: simultaneous measurement of pulse rise and fall times with high time resolution (8 and 9)


The fast sweep time of 100 ns/div as well as the gap sweep and pretrigger functions of Spectrum Analyzer FSE make it possible to measure the rise and fall times of an RF pulse simultaneously and with high time resolution. The center of the pulse, which is of no interest, is blanked. Even at a resolution bandwidth of 1 MHz FSE offers a dynamic range of over 80 dB thanks to the high 1 dB compression point of +10 dBm.

Gated sweep (10 and 11)

The gated sweep function is indispensable for analyzing TDMA signals used in modern communication systems. With this function, the spectrum of burst signals can be investigated without any interference being caused by switching the signals on and off. The selected gate time determines over what interval a pulse is to be analyzed. Selection of the gate time is easy and convenient in the time domain display (zero span) of the pulse.

(I/D signal and phase error measurements over 50 symbols of a GSM mobile

Measurement of GSM power ramps to standards with high-precision time reference through synchronization to mid-amble

14 Measurement of modulation errors of π/4-DQPSK signals (NADC)

Vector signal analysis

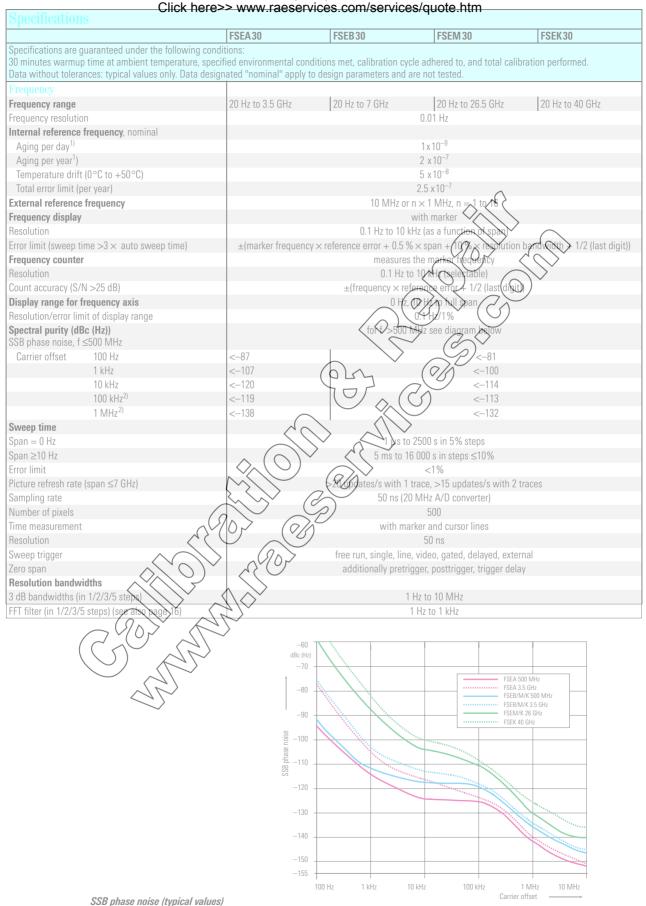
Universal analysis of digital signals
Spectrum Analyzer FSE in conjunction with the optional Vector Signal Analyzer
FSE-B7 is ideal for demodulating and measuring digitally modulated signals with frequencies up to 3.5 GHz, 7 GHz, 26.5 GHz or 40 GHz. This universal tool offers a wide variety of settings:

- Demodulation of all common mobileradio signals
- Symbol rates up to 2 MHz
- Type of filter
- Roll-off factor or BT product of filter
- Synchronization bit sequences
- Predefined, application-specific settings for all common standards, e.g.

Varsatile display of results

Magnitude and phase

- Vector and constellation diagrams
- Eye and trellis diagrams
- Sum fault: amplitude, frequency, phase, vector


Power ramp measurements

To perform power ramp measurements to standards on TDMA systems such as GSM or DECT, reference must be made to synchronization sequences (pre- or midamble) in order to establish a time reference. Making such measurements to standard is not possible using conventional analyzers — but it is no problem with FSE!

Accurate AM, FM and PM measurements

Featuring high-accuracy measurement of the modulation depth and frequency deviation coupled with the display of demodulated signals in the time domain, FSE not only enables testing of analog and dual-mode radio equipment but also the determination of the transient response in frequency and amplitude (see data sheet PD 0757.2167).

Spectrum Analyzer FSE and the optional vector signal analyzer provide universal test capabilities in one unit.

Specifications		F0F* 00	FORDO	Poss	FOEMOO
D 1 111	40 A A I I	FSEA30	FSEB30	FSEM30	FSEK30
Bandwidth error	≤3 MHz			<10%	
	5 MHz			<15%	
	10 MHz			+25%, -10%	
Shape factor 60:3 dE	8 <1 kHz			<6	
	1 kHz to 2 MHz			<12	
	>2 MHz			<7	
/ideo bandwidths			1 h	lz to 10 MHz, 1/2/3/5	steps
Display range			noi	se floor displayed to 30	1 dRm
Maximum input lev	al		TIO	so noor displayed to ot	o delli
RF attenuation 0 dB	61				
DC voltage				0 V	\sim
					$\Diamond_{\wedge}\langle$
CW RF power				20 dBm (=0.1 W)	
Pulse spectral den				97 dBµV (MHz)	
RF attenuation ≥10 o	18			()	
DC voltage				0 V	
CW RF power				30 dBnz(1=(VV)	
Max. pulse voltage			150 V		(U5)/V
Max. pulse energy	(10 µs)		1 mWs	~ (0 K/1 \)	0.5 mWs
1 dB compression of (0 dB RF attenuation				A10 dBm pominal	
Displayed average r	noise floor	in dBm (0 dB RF	attenuation, RBW 10 Hz,	VBW THz, 20 averages	, trace average, span 0 Hz, termination 50 Ω
Frequency	20 Hz	<-80		V ~	2-74
,	1 kHz	<-110	01	(0/1)	<-104
	10 kHz	<-125	22	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<-119
	100 kHz	<-135		/ ~ ^	<-129
	1 MHz	<-145, -150 typ.		/^ \ _ /	12, typ. –145
	10 MHz to 3.5/6 GHz	<-145, -150 typ.			<-138, -140 typ.
		ζ-143, -130 typ		Aby A	
	6 GHz to 7 GHz		<-139	→	<-135, -138 typ.
	7 GHz to 18 GHz	- >.(C)) \ -	<-138, -	
	18 GHz to 26.5 GHz			<-135, -	
	26.5 GHz to 30 GHz	(\)	(0)	_	<-120, -125 typ.
	30 GHz to 40 GHz			-	<-116, -122 typ.
Max. dynamic rang	e, bandwidth 1 Hz	(h.)	$\sim P$		
Displayed noise floor	to 1 dB compression	MOD (162 dB		160 dB
Max. harmonics su	ppression, f >50 MHz			>90 dB	
Max. intermodulati	on-free range	(90	>		
50 MHz to 3.5 GHz (r	nominal)	115 08 2	_		_
150 MHz to 7/26.5 G		_	115 dB		112 dB
Intermodulation	TIZ (HOMINION)		110 05		112 05
TOI, intermodulation	free dynamic range	284 Bc for f >50	MHz >90 dBc for f :	~150 MH₂	>94 dBc for f >100 MHz
level 2×-30 dBm, Δ		(101 > 12 dBm.	(TOI >15 dBm,		>80 dBc for f >7 GHz,
.0101271 00 05111,72	7707	18 dBm typ.)	20 dBm typ.)		(TOI >17 dBm, 22 dBm typ.;
		>			>10 dBm for f >7 GHz)
ntermodulation-free	ange at -40 dBm mixer level			105 dB	
Intercept point k2 (di		>25, >40 typ. for		>25 for f <	150 MHz, >35 typ.,
	~(~)	f <50 MHz, >45,			150 MHz, >45 typ.
	(1)	>50 typ. for f >50	MHz		,,
Immunity to interfe	rence				
Image frequency (dB	(1)		>80, >90 typ.		>80, >90 typ. for f <22 GHz >75, >80 typ. for f >22 GHz
ntermediate frequer	ncv (dB)	>100 dB			>75, 750 typ. 161 1 7 22 d.12
	>1 MHz, without input signal,				
Span <30 MHz				<-110 dBm	
Span ≥30 MHz				<-100 dBm	
	175 MU2 5 7170 OU-				
	5.175 MHz, 5.7172 GHz	140 15		<-100 dBm	100 ID
$f_{in} = 60 \text{ MHz}$		<-110 dBm		<-	–100 dBm
$f_{in} = 14.1894 \text{ GHz},$					
Span >10 MHz				-90 dBm	
	nals (mixer level <-10 dBm)	$<-80 \text{ dB}^{3)}$:75 dB ³)

Specifications				
	FSEA30	FSEB30	FSEM 30	FSEK30
_evel display				
Vleasurement display	500×40			s with independent settings
ogarithmic level range		10 dB to	200 dB, in steps of 10 dB	
inear level range		10% of reference level per	r division (10 divisions) or lo	ogarithmic scaling
Fraces		max. 4 per diagran	n (max. 2 if 2 diagrams are nalog display of all results	-
Frace detector			nuto peak (normal), sample,	, rms, average
race functions			, max hold, min hold, avera	-
Setting range of reference level			,,	-5-
ogarithmic level display		120 dPm	to 30 dBm, in steps of 0.1	dD.
				ub
inear level range			to 7.07 V in steps of 1%	\
Jnits of level axis	71	mV, μV, mA, μ	dBpW (logarithmic and In uA, pW, nW (linear evel di	splay)
Level measurement uncertainty (–40 dBm, RF attenua tion 20 dB, reference level –15 dB, RBW 5 kHz)	The value	s are guaranteed for band		Nz and 100 kHz to 10 MHz.
Absolute error limit at 120 MHz			<0.3 dB	(())
Frequency response (10 dB RF attenuation)			~~~	\bigcirc
<1 GHz			(25 kB)	(\bigcirc)
1 GHz to 3.5/7 GHz			() M < (
7 GHz to 18 GHz		-	$(\vee \mathcal{S}) \vee (\mathcal{S})$	$<2 dB^4$
18 GHz to 26.5 GHz		- (0)		$<2.5 \text{ dB}^4$)
26.5 GHz to 40 GHz		_ \	7 - 1-1	<3 dB ⁴)
Attenuator error limit			> <0.3 d	10 00 /
F gain error			<0.2 dB (b.1 28 tvo.)	
o a constant of the constant o		(0/5/2)	LU.Z UB (1871 1871 1911.)	
Display nonlinearity				
Logarithmic level display			(C)	
(RBW ≥1 kHz, analog)				
0 dB to -50 dB			> <0.3 dB	
−50 dB to −70 dB		$\langle \vee \rangle$	<0.5 dB	
−70 dB to −80 dB		$\langle \rangle$ $\langle \rangle$	_	
-70 dB to -95 dB	$ \langle \rangle_{\sim} \langle \rangle$		<1 dB	
Linear level display	100	(0/1) 5	% of reference level	
Bandwidth switching error	\ \\			
1 Hz to 30 kHz/100 to 500 kHz	W ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<0.2 dB	
1 MHz to 10 MHz		\sim 7)	<0.2 dB	
Total measurement uncertainty (0 dB to 50 dB selow	(0)	7/1)	<0.5 db	
reference level, span/RBW <100, rss 95% reliability	\vee	9		
<1 GHz	(90)	>	<1 dB	
1 GHz to 3.5/7 GHz	1			
^			<1.5 dB	0.5.10/1
7 GHz to 18 GHz	\wedge	_		$<2.5 dB^4$)
18 GHz to 26.5 GHz	7/~	_		$<3 dB^4)$
26.5 GHz to 40 GHz	\checkmark	_	_	$<3.5 \text{ dB}^4$)
Pulse amplitude error (single pulse) Bandwidth <1 (// LATE 1//		<0.5 dE	3, nominal/<2 dB, nominal	
Prigger function				
Trigger		free ru	n, line, video, RF, external	
Delayed sweep		1100 10	,, 1.200, 111, 0.1.011101	
Trigger source		froe ru	n, line, video, RF, external	
			olution 1 µs min. or 1% of a	dolay timo
Delay time				uelay tillie
rror of delay time		±(1 µ	s + (0.1% x delay time))	
Delayed sweep time			2 µs to 1000 s	
Gated sweep				
rigger source			external, RF level	
Gate delay			1 µs to 100 s	
Gate length		1 µs to 100 s. reso	lution min. 1 µs or 1% of g	ate length
Error of gate length			+ $(0.05\% \times \text{gate length}))$	
		±(1 μ)	10.00 /0 \ gate lellytil]]	
Gap sweep (span = 0 Hz)			- Barristan DE 1	
rigger source			n, line, video, RF, external	
retrigger			resolution, dependent on	
rigger to gap time		1 µs to 100 s, 50 ns	resolution, dependent on	sweep time
Gap length		1 1	o 100 s, 50 ns resolution	

Specifications	e>> www.rae		<u> </u>		
	FSEA30	FSEB30	FSEM30		FSEK30
Audio demodulation					
AF demodulation types			AM and FM		
Audio output		loudsp	eaker and headphones or	ıtput	
Marker stop time			100 ms to 60 s		
Inputs and outputs (front panel)					
RF input		N female, 50 Ω	adapter systemale and fen	nale, 3.5 mm	adapter system, 50 Ω , N male and female, K
MOMD (DE 11 2' > 10 ID)			male and fen	1816	male and female, 2.4 mm female
VSWR (RF attenuation ≥10 dB)			1 -		
f < 3.5 GHz		1	<1.5		
f < 7 GHz	_		</td <td>/.U / }</td> <td>1 05</td>	/.U / }	1 05
f <26.5 GHz		-	<3		<2.5
f <37 GHz		_			<2,5
f <40 GHz		_	I- (0 ₁		2.5 (4.)
Attenuator			70 dB, selectable in 10 dB	steps <	()
Probe power		+15 V DC, -	12.6 V DC and ground, m	ix. 150 mA	
Power supply and coding connector for antennas etc (antenna code)			12-contact Tuerlel) *
Supply voltages		£	T K max. 400 mA, ground	(\mathcal{O})	
AF output		/ ($\Sigma_{\rm out} = \Omega_{\rm out}$, jack plug		
Open-circuit voltage			actustable up to 34	\supset	
Inputs and outputs (rear panel)			$\langle \rangle$	•	
IF 21.4 MHz		7 - 5/ Q RNG foma	ale, bandwidth Hz or	recolution ha	ndwidth
Level		$Z_{\text{out}} = 50 \text{A}$, BNG fema	erence level mixer level :	CO dDm	Huwiutii
		U dbill albei	$S_{\rm pt} = 5(\Omega)$, BNC female	>00 ubili	
Video output		0 V to 1 V, full scale	ont = 30 23, pinc remaie		- U
Voltage (resolution bandwidth ≥1 kHz)		U V to 1 V, full scale	(open-cireuit voltage); lo	garithmic sca	aling
Reference frequency		$\langle \langle \langle \rangle \rangle \rangle$			
Output, usable as input			BNC female		
Output frequency		/// (.(10 MHz		
Level			10 dBm nominal		
Input	(2)/	(%) 1 M	Hz to 16 MHz, integer MI	-lz	
Required level	~~~~		$>$ 0 dBm into 50 Ω		
Sweep output /	b \	BNC fen	nale, 0 V to 10 V in sweep		
Power supply connector for noise source	107 (BNC fe	male, 0 V and 28 V, selec	table	
External trigger/gate input			BNC female, $>$ 10 k Ω		
Voltage	(2)	> .	-5 V to +5 V, adjustable		
IEC/IEEE-bus control	1 2000	interface to IEC 625	-2 (IEEE 488.2), command	set: SCPI 19	94.0
Connector		24-	contact Amphenol femal	Э	
Interface functions		SH1, AH1, T	6, L4, SR1, RL1, PP1, DC1	, DT1, C11	
Serial interface	1/		and COM 2), 9-contact fe		tors
Mouse interface	1		PS/2 mouse compatible		
Plotter ⁵⁾	\vee		s or RS-232-C; plotter lan	nuage: HP-GL	
Printer interface			onics compatible) or seria	0 0	-
Keyboard connector			t DIN female for MF-2 ke		
User interface			5-contact Cannon female	rbouru	
Connector for external monitor (XGA)		Z	15-contact female		
			וט-נטוונמנו ופווומופ		
General data		0.1	LOTET 1 12 12 12	ГШ	
Display			n LC TFT colour display (9		
Resolution		640 >	< 480 pixels (VGA resoluti	on)	
Pixel failure rate			$<2 \times 10^{-5}$		
Mass memory		1.44 Mby	rte 3 ½" diskette drive, ha	rd disk	
Operating temperature range					
Nominal temperature range			+5°C to +40°C		
Limit temperature range			0°C to +50°C		
Storage temperature range			-40°C to +70°C		
Humidity		+40°C at	95 % relative humidity (IE	C 68-2-3)	
Mechanical resistance					
Vibration, sinusoidal			2 g at 55 Hz; 55 Hz to 15 68-2-3, IEC 1010-1, MIL-T-		
Wibratian random) J
Vibration, random		10 Hz to	300 Hz, acceleration 1.2	(rms)	

Specifications	FSEA30	FSEB30	FSEM30	FSEK30		
Shock		10 g shock spectrum, to MIL-	STD-810 D and MIL-T-28800 D	, classes 3 and 5		
Recommended calibration interval		1 year (2 years for operation with external reference)				
RFI suppression		to EMC directive of EU (89/336/EEC) and German EM(Clegislation		
Power supply						
AC supply	200 V to 24	10 V: 50 Hz to 60 Hz, 100 V to	120 V: 50 Hz to 400 Hz, class	of protection I to VDE 411		
Power consumption	180 VA	195 VA	230 VA	230 VA		
Safety		to EN 61010-1, UL311	1-1, CSA C22.2 No. 1010-1, IE	C 1010-1		
Test mark			VDE, GS, UL, cUL			
Dimensions in mm (W x H x D)	43	35 x 236 x 460 (5 HU)	435 x 236 x 570	435 x 236 x 570		
Weight in kg	22.7	23.2	25.2	25.8		

- After 30 days of operation.
- 2) Valid for span >100 kHz.
- 3) For models with option FSE-B23: <-50 dBm.
- 4) For frequencies >7 GHz: error after calling peaking function. For sweep times <10 ms/GHz: additional error 1.5 dB.
- The plot function is not available if option FSE-B15 is installed.

Specifications

FFT filter

High frequency resolution due to very small shape factor of 2.5 Extremely short measurement time, up to 150 times faster than with conventional

Resolution bandwidths (RBW)

3 dB bandwidth in 1/2/3/5 steps 1 Hz to 1 kHz Bandwidth error 2%, nominal Shape factor 60:3 dB 2.5, nominal

Display range for frequency axis

Min. span 25 x RBW Max. span 100000 x RBW, rhad 3 MHz

Max. display range 100 dB

Immunity to interference

Spurious response ≤100 dBm

1 dB Attenuator FSE-B13

Frequency range max. 7 GHz (stop frequency \leq 7 GHz) Setting range of RF attenuation 0 dB to 70 dB

Step width

Additional attenuator uncertainty

Step width

Co.1 dB

External Mixing VSE-V

) output K input (front panel) SMA female, 50 Ω LO signal 7.5 GHz to 15.2 GHz

Amelitude +15.5 dBm ±3 dB
741.4 MHz
-20 dBm
SMA female, 50 Ω
741.4 MHz

Full-scale level —20 dBm vel preasurement error at IF inputs

referenceNevel —20 dBm. RBW 30 kHz) <1 dB

ased Level Accuracy FSE-B22

fotal level error ≤0.5 dB with 10 dB RF attenuation

≤0.6 dB with 20/30/40 dB RF attenua-

tion

Specifications are valid for:

Temperature range -/+20°C to +30°C Frequency range 10 MHz to 2 GHz

Resolution bandwidths 5 kHz to 30 kHz/300 kHz/1 MHz
Signal level 10 dB to 50 dB below reference level

Stop frequency ≤2 GHz

Sweep time $\geq 3 x$ auto sweep time

Broadband Output 741.4 MHz FSE-B23

FSE-B23 reduces the suppression of other interference signals to -50 dBm and must not be combined with FSE-K10/-K11.

	FSEA	FSEB	FSEM	FSEK
Gain from RF input to IF output (dB)	6	6	4	4
3 dB BW (MHz)	60	150	150 ¹⁾ 40 to 80 ²⁾	150 ¹⁾ 40 to 120 ³⁾

- f < 7 GHz.
- ²⁾ 7 GHz to 26.5 GHz.
- ³⁾ 7 GHz to 40 GHz.

Connector 50 Ω Impedance

For maximum bandwidth set instrument to 10 MHz RBW. The output level is a function of the mixer level, which equals the input signal level minus the set RF

The typical loss between mixer level and IF output is 2 dB for FSEM/K, and 0 dB for FSEA/B.

20 Hz to 44 GHz Frequency range

Level

Displayed average noise level (DANL)

(0 dB RF attenuation, RBW = 10 Hz, VBW = 1 Hz, 20 averages, trace average,

span 0 Hz, 50 Ω termination)

40 GHz to 42 GHz <-112, -128 dBm typ. 42 GHz to 43 GHz <-108, -113 dBm typ. 43 GHz to 44 GHz <-105, -110 dBm typ.

Order designation	Туре	Order No.
Spectrum Analyzer 20 Hz to 3.5 GHz	FSEA30	1065.6000.35
Spectrum Analyzer 20 Hz to 7 GHz	FSEB30	1066.3010.35
Spectrum Analyzer 20 Hz to 26.5 GHz	FSEM 30	1079.8500.35
Spectrum Analyzer 20 Hz to 40 GHz	FSEK30	2088.8494.35
Accessories supplied Power cable, operating manual, spare fuses; FSEM: test-port adapter 3.5 mm female (1021.0: (1021.0535.00) FSEK: test-port adapter K female (1036.4790.00)	$\Delta V / U$	19male (1036,477,00)
Options (see also fold-in page)) * ,	15.0
7 GHz Frequency Extension for FEA	FSE-B2	1873/5044.02
Vector Signal Analyzer	FSE-87	1066.4317.03
Tracking Generator 2.5 GHz	E2E-B8,1	1066.4469.02
8.5 GHz. With I/O modelator	ESE-B9 ¹)	1066.4617.02
7 GHz	FSE-B10 ¹)	1066.4769.02
7 GHz with I/Q modulator	FSE-B11 ¹)	1066.4917.02
Switchable Attenuator for Tracking Generator	FSE-B12 ²⁾	1066.5065.02
1 dB Attenuator	FSE-B13 ²⁾³⁾	1119.6499.02
Controller for FSE (mouse and keyboard included)	FSE-B15 ⁴⁾	1073.5696.06
Ethernet Interface 15-contact AUI connector	FSE-B16 ⁵⁾	1073.5973.02
Thin-wire BNC connector	FSE-B16 ⁵)	1073.5973.03
RJ-45 connector (twisted pair)	FSE-B16 ⁵)	1073.5973.04
2nd IEC/IEEE-Bus Interface for FSE	FSE-B17 ⁵)	1066.4017.02

3rd-order intercept point (TOI) Δ f >5 x resolution bandwidth or >10 kHz +15 dBm typ. >40 GHz

>25 dBm for f <150 MHz 2nd harmonic intercept point (SHI) >40 dBm for f >150 MHz

Level measurement error

Frequency response (10 dB RF attenuation)

 $<4.0 dB^{1)2}$ 40 GHz to 44 GHz

Total measurement error

(0 dB to 50 dB below reference level)

<4.5 dB¹⁾²⁾ 40 GHz to 44 GHz

Inputs and outputs (front panel)

RF input adapter system, 50 Ω , N male und female, K male und female, 2.4 mm

VSWR (RF attenuation >0 dB) f >40 GHz

Error after running the p GHz: additional error 1.5 dB.

Temperature rai

Order designa	€lon-/		Туре	Order No.
Removable Hai	rd Disk		FSE-B18 ⁴)	1088.6993.02
2n d H ard Disk Girmware inch	for FSE/B 8		FSE-B19	1088.7248.02
External Mixing			FSE-B21	1084.7243.02
Increased Leve	Accuracy up	to 2 GHz	FSE-B22 ⁴)	1106.3480.02
Brog band Out	tput 741.4 MH	Z	FSE-B23 ⁴)	1088.7348.02
44 GHz Freque	ncy Extension	for FSEK	FSE-B24 ⁴)	1106.3680.02
Software				
Noise Measure	ement Softwar	e, Windows	FS-K3 ¹)	1057.3028.02
Phase Noise M	leasurement S	oftware, Windows	FS-K4 ¹)	1108.0088.02
GSM Application	on Firmware	Mobile station	FSE-K10 ¹)	1057.3092.02
		Base station	FSE-K11 ¹)	1057.3392.02
EDGE Applicati	on Firmware	Mobile station	FSE-K20 ¹)	1106.4086.02
		Base station	FSE-K21 ¹)	1106.4186.02
Recommende	d extras			
Service Kit			FSE-Z1	1066.3862.02
DC Block	5 MHz to 7	000 MHz (type N)	FSE-Z3	4010.3895.00
	10 kHz to 1	8 GHz (type N)	FSE-Z4	1084.7443.02
Microwave Me Set for FSEM	asurement Ca	ble and Adapter	FSE-Z15	1046.2002.02
Harmonic Mixe	er 4	0 GHz to 60 GHz	FS-Z60 ¹)	1089.0799.02
	5	0 GHz to 75 GHz	FS-Z75 ¹)	1089.0847.02
	6	0 GHz to 90 GHz	FS-Z90 ¹)	1089.0899.02
	7	5 GHz to 110 GHz	FS-Z110 ¹)	1089.0947.02

		Туре	Order No.	ices.com/services/que Order designation	J.G.11011	Туре	Order No.
Service Manual		_	1065.6016.24	High-Power Attenuators	100 W	RBU 100	1073.8820.>
Headphones		-	0708.9010.00	Steps: 3/6/10/20/30 dB	50 W	RBU 50	1073.8895.xx: 03/06/10
Keyboard	German	PSA-Z2	1007.3001.31				20/30
	US	PSA-Z2	1007.3001.02			ESV-Z3	0397.7014.5
PS/2 Mouse		FSE-Z2	1084.7043.02	For FSEM only: Test-Port Adapter	N male	_	1021.0541.0
IEC/IEEE-Bus Cable	1 m	PCK	0292.2013.10		3.5 mm male	_	1021.0529.0
	2 m	PCK	0292.2013.20	For FSEK only:			1000 4700 0
19" Rack Adapter, with	front handles	ZZA-95	0396.4911.00	Test-Port Adapter	N make	_	1036.4783.0
Transit Case		ZZK-954	1013.9395.00		K male	-	1036.4802.0
Transit Case (FSEM30 a	nd FSEK30 only)	ZZK-955	1013.9408.00		2.4 mm gazale	F8 E Z5	1088.1627.0
Matching Pads, 75 Ω	L section	RAM	0358.5414.02	Probe Power Connector 3-	sonyac)	3)\rightarrow	1065.9480.0
	Series resistor, 25 Ω	RAZ	0358.5714.02	1) Futro do La			
	voltage and field-		data sheet	d) Cannot be revolited, factory-	agrapymentry. incolorp.) pprox F8E-B15.		
SWR Bridge	5 MHz to 3000 MHz	ZRB2	0373.9017.52	70/2 (?)			
	40 kHz to 4 GHz	ZRC	1039.9492.52				
Accessories for current, strength measurement	voltage and field-	see access Receiver a Analyzers, PD 0756.43	ories for Test nd Spectrum data sheet 320 0373.9017.52	In combination with FSE-B22 f Cannot be retroffized, factory- FSE-B16 and FSE-B17 reguling.	pe fitted together. active fitted surv. ined and pp) AF8E-B15.		

